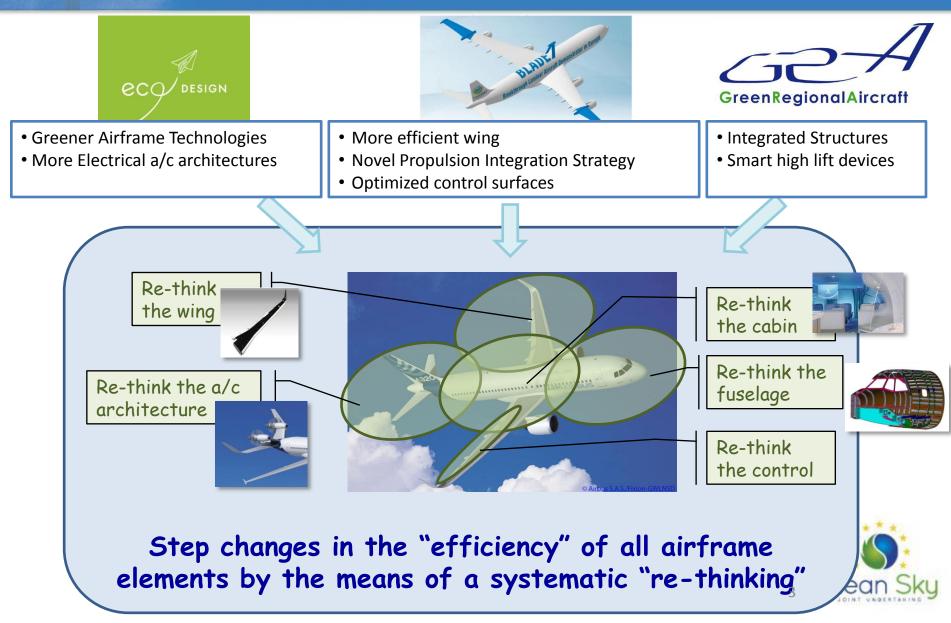


Innovation Takes Off

www.cleansky.eu

Clean Sky 2 Information Day dedicated to the 4th Call for Proposal (CfP04)

AIRFRAME


Brussels, 22nd June 2016

www.cleansky.eu

From Clean Sky towards Clean Sky 2

Overall Technical Overview

	High	Performa	ince & En	High V	ersatility	& Cost Eff	iciency		
	Innovative Aircraft Architecture	Advanced Laminarity	High Speed Airframe	Novel Control	Novel travel experience	Next generation optimized wing	Optimized high lift configs.	Advanced integrated structures	Advanced Fuselage
Focused Integrated Demonstrations	Investigate advanced engine integration & novel overall architecture	Laminar nacelles; NLF smart integrated wing fitting the industrial environment	High efficient multi-disciplinary flexible wing; fuselage changes in shapes, & structure	Smart multi-function control surfaces & load & flutter alleviation	Passenger friendly cabin; ergonomic & flexible, new volume utilisation	Low cost composite structures	Efficient architectural concept for turbopropeller high wing – composite nacelle & adaptative	New structural paradigm for optimised integration of systems in airframe, electrical wing	Novel composite fuselage & cabin; tailless or pressurized fuselage for rotorcraft
Transverse Enabling Capability	Novel Certif. Process	Extended Laminarity	Eco Design			More Efficient Wing Flow & shape Control		Advanced Manufact.	

CFP04 Overview of AIRFRAME ITD topics

JU Ref.	CfP Title	WP/Task	RIA or IA	Duration (Month)	Est. budget [k€]
JTI-CS2-2016-CFP04-AIR-01	Project HPE				
JTI-CS2-2016-CFP04-AIR-01-20	Development of a highly instrumented, modular fan module for aerodynamic and acoustic wind tunnel testing	A-1.2.1	RIA	18	600
JTI-CS2-2016-CFP04-AIR-01-21	Integrated Automated Test Bench Control System with Certifiable Test Documentation Functionality	A-1.4.6	IA	18	600
JTI-CS2-2016-CFP04-AIR-01-22	Laminated and panoramic Cabin Windows for Business Jet applications	A-3.2	IA	24	400
JTI-CS2-2016-CFP04-AIR-01-23	Novel manufacture of low weight skin without chemical milling	A-3.3	RIA	30	900
JTI-CS2-2016-CFP04-AIR-01-24	Multi-functional cabin rest area	A-5.1	IA	30	500
JTI-CS2-2016-CFP04-AIR-02	Project HVC				
JTI-CS2-2016-CFP04-AIR-02-28	Development of methods for deriving optimized shapes of morphing structures considering both aerodynamic performances and specific mechanical morphing boundary conditions	B-1.4.2	RIA	25	350
JTI-CS2-2016-CFP04-AIR-02-29	Development and Manufacturing of Prototype metallic parts.	B-2.2	IA	24	750
JTI-CS2-2016-CFP04-AIR-02-30	Development and manufacturing of innovative stamping dies for aluminium ribs Hot Stamping	B-2.2.1	IA	12	350
JTI-CS2-2016-CFP04-AIR-02-31	Numerical methodologies and related tools for effect of defect prediction in manufacturing	B-3.3.2	RIA	36	500
JTI-CS2-2016-CFP04-AIR-02-32	Testing matrix optimization by interaction between numerical modelling and innovative non-contact measurement technology	B-3.3.2	IA	36	500
JTI-CS2-2016-CFP04-AIR-02-33	Developing innovative joining concepts and their manufacturing methodologies	B-3.4.2	IA	30	500
JTI-CS2-2016-CFP04-AIR-02-34	Hardware demonstrator development and deployment on Future Industrial Humar Machine Interface (HMI) and Connected factory technologies	1B-3.6	RIA	30	300
JTI-CS2-2016-CFP04-AIR-02-35	Development and deployment of new procedures and PLM Tools for A/C Ground Functional testing with Eco-design criteria	В-3.6	RIA	26	650
JTI-CS2-2016-CFP04-AIR-02-36	Development of prototype system based on Laser UT technology for high speed contactless no-couplant inspection of hybrid and thick composite structures	B-4.3	IA	24	2500
JTI-CS2-2016-CFP04-AIR-02-37	Quilted Stratum Processes (QSP) for low cost and eco thermoplastic manufacturing of complex composite parts	B-4.3	IA	18	400

AIR-02-36

- Estimated Funding Topic Value: 2,5M€
- Duration: 24 months
- Start date: **Q2 2017**
- SoW overview:

The aim of this Topic is to develop a prototype system based on Laser UT (LUT) technology to be used for NDI inspection of hybrid composite structures, containing damping materials that absorb most energy of the ultrasonic wave at 5 MHz, and as well as on laminates "thick" or made of very attenuative materials. This system will also be used to inspect the Long Barrel Demonstrator, that will be developed in Clean Sky 2 Programme using the hybrid technology.

- The activity is divided into the following Tasks:
 - LUT Prototype System Requirements
 - LUT Prototype System Design
 - LUT Prototype System Development
 - LUT Prototype System Validation

LUT Prototype System Requirements

- Analysis of the inspection requirements, in terms of typology and location of defects to be detected, minimum detectable defect size and maximum acceptable defect size, inspection method/technique, inspection parameters, signal-to-noise ratio, etc.
- Analysis of the configuration of parts to be inspected, in terms of geometrical/dimensional features, materials and fabrication process.
- Definition of a Test Book to be used for pre and final verification and validation of LUT Prototype System

LUT Prototype System Design

The aim of this task is the design of LUT prototype system. That means the design of the following subsystems:

- High speed scanning system, able to assure the coverage of inspection area, a high scanning speed (at least, 8 m²/h) and a scanning index variable between 0.5 mm to 3 mm with 0.5 mm steps.
- High peak power short-pulsed laser, for generation of ultrasonic wave directly in the part, without damage the part.
- Detection long-pulsed laser, to "read" the surface displacement induced by ultrasonic wave propagation in the material.
- Interferometer, to demodulated the information detected by the detection laser,
- Opto-electronic circuit, for the detection of small signals reducing the noise in order to obtain acceptable signal-to-noise ratio.
- Acquisition module, to synchronize laser shots and digitizer for fullwave acquisition of ultrasonic signals (maximum sampling frequency = 100 MHz, 10 bit for each sample).

LUT Prototype System Development and Validation

LUT Prototype System Development

- Development of each component of LUT system.
- Preliminary test at Partner factory to verify the performance of each component and of whole LUT system, in terms of scanning ability and detectability of the defects.
- Optimization of the key parameters of the inspection process (in particular, the generation laser, the detection chain and post-processing algorithms), to assure the correct inspectability of hybrid composite structures with damping materials or thick/very attenuative laminates.
- Installation of the system at Topic Manager plant. The installation shall be performed by Partner according to the current safety regulations.

LUT Prototype System Validation

Validation of LUT prototype system performing all the tests foreseen in the Test Book.

Inspection of the Fuselage Barrel demonstrator.

Schedule, Deliverables and Milestones

											Mor	nths	fron	n TO										
N.ro Task - Title	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
01-LUT Prototype System Requirements																								
02-LUT Prototype System Design																								
03-LUT Prototype System Development																								
04-LUT Prototype System Validation																								

Delivera	Deliverables									
Ref. No.	Title - Description	Туре	Due Date							
D1	Test Book for LUT Prototype System Validation	Document	T0 + 2							
D2	Design of LUT Prototype System	Document	T0 + 11							
D3	Pre-validation Report	Document	T0 + 17							
D4	Providing LUT Prototype System	Document/Hardware/Software	T0 + 21							
D5	Validation Report	Document	T0 + 24							

Milestone	Milestones (when appropriate)									
Ref. No.	Title - Description	Туре	Due Date							
M1	Design of LUT Prototype System	Document	T0 + 11							
M2	Pre-validation Report	Document	T0 + 17							
M3	Providing LUT Prototype System	Document/Hardware/Software	T0 + 21							
M4	Validation Report	Document	T0 + 24							

Skills, Capabilities expected from the Applicant(s)

- Proven experience in Laser UT technology applied to aeronautical structures.
- Proven experience in Non-destructive inspection based on ultrasound method applied to aeronautical structures.
- Proven experience in the realization of the system for Ultrasonic Inspection of aeronautical structures.

JTI-CS2-2016-CFP04-AIR-01-16 : Development of innovative joining concepts and their manufacturing methodologies

Context and applications :

The scope of CfP is focused on the improvement of mechanical and electromagnetic properties of hybrid joints, their durability and resilience against environmental and operational effects, and facilitating their manufacturing and integration into the real aircraft structure. Secondary scope is to assess the feasibility of innovative solutions and their potential use in commercial products of small aircraft producers.

Technical Target in the project:

- Production and testing of reference hybrid joints (strength + electromagnetic properties)
- Proposal of new design of hybrid joints with application of more suitable or innovative manufacturing methods
- Production and testing of innovative hybrid joints + test results comparison (strength + EMC)
- Development and validation of manufacturing methodology for innovative joining
- Main characteristics :
 - Proposing of testing methods will be fully managed by CfP-partner but verified by Topic Manager.
 - Strength of innovative hybrid joints should be at the same level or better and costs reasonably preserved.

Timeframe and funding:

Foreseen start : Q3/2017 Foreseen end : Q4/2019 (30 months) Indicative Funding Topic Value 500K€

Proposed WBS

To be refined by applicant

Deliverables	Deliverables								
Ref. No.	Title - Description	Туре	Due Date						
D1	Report: test specification of reference specimens Report: test methodology	R R	T0 + 4 months						
D2	Test results of reference specimens	D / R	T0 + 7 months						
D3	Feasibility study of joint optimization	R	T0 + 9 months						
D4	CAD data of innovative joints Description of production technology of innovative joints	D R	T0 + 13 months						
D5	Test results of innovative specimens (1 st round) Test results of innovative specimens (2 nd round)	D / R D / R	T0 + 18 months T0 + 24 months						
D6	Validation of innovative joints for application into demonstrator	R	T0 + 26 months						
D7	Report on innovative joining methodology	R	T0 + 30 months						

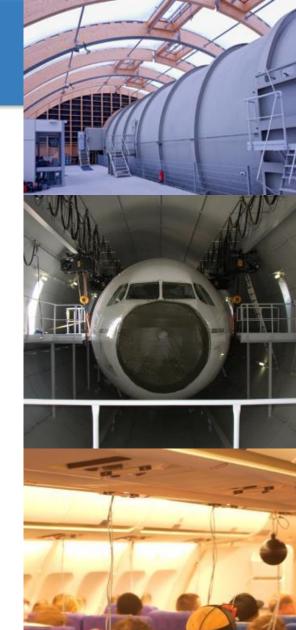
CfP04-Airframe-AIR-01-21

- JTI-CS2-2016-CFP04-AIR-01-21
- **Title:** Integrated automated test bench control system with certifiable test documentation functionality

• Objectives:

Design, realization and validation of a control and test system, with following features:

- Control over the Clean Sky Thermal Benches at Fraunhofer IBP- Holzkirchen
- Provision of a Beckhoff based control system
- Standardized interface to other measurement and control systems
- Full adaptable control laws for the regulation of thermodynamic control parameters (e.g. PID controller have to be fully selectable and editable by the user)
- Integration of new HW shall be completely manageable by the user
- Test procedure editor, which creates interactive test procedures with direct control over the test bench installation
- Certifiable automated document creation for test procedures and test reports
- Training, support and introduction of the users
- Volume: 600 k€ funding



CfP04-Airframe-AIR-01-21

Thermal Bench information

Parameters to be controlled and measured:

- Tube Pressure Control (116hPa 940hPa)
- Climatisation of outer fuselage skin (-35°C +55°C)
- Supply of arbitrary cabin air (-10°C +55°C, rH 5% 65%)
- Artificial heat sources (equipment, heated Dummies)
- Additional ventilators/ fans
- Fluid pumps
- Temperature, Pressure, Humidity & Convection measurement probes (system shall be extendable for more than 1000 sensors, sensors have to be supplied for exemplary usability only)

CfP04-Airframe-AIR-01-21

Schedule (Mile stones):

•	Definition of detailed requirements:	t0+ 3M
•	PDR	t0+ 6M
•	CDR	t0+ 9M
•	Manufacturing and installation of HW	t0+12M
•	Development of SW	t0+15M
•	Testing and acceptance	t0+18M
•	Support online & on-site	t0+18M - t0+30M

Targeted applicant:

- Availability on Holzkirchen site
- Authorized for installation of electric constructions in the main electric network in Germany
- Conformance with BGV A3

Required skills:

- Control and measurement system programming
- HMI-Design
- Familiar with Beckhoff HW
- TwinCAT experience
- Automated testing
- Test documentation
- Certification rules

Contact Person:

Markus Siede Fraunhofer Gesellschaft <u>Email: Markus.siede@ibp.fraunhofer.de</u> Tel.: 08024 643 674

JTI-CS2-2016-CFP04-AIR-02-28

• CfP number: JTI-CS2-2016-CFP04-AIR-02-28

• **Title:** Development of methods for deriving optimized shapes of morphing structures considering both aerodynamic performances and mechanical/structural boundary conditions.

• Objectives:

- Deriving shapes for morphing leading edge, which are
 - optimized regarding aerodynamic performance,
 - Feasible with given material limitations (e.g. strain/bending)
- Numerical aerodynamic performance assessment of final shapes
- Volume: 350 k€ funding

JTI-CS2-2016-CFP04-AIR-02-28

• Schedule:

Deliverables							
Task	Result	Туре	Due Date				
T1	Method for aerodynamic optimization	Report	M8				
••	considering mechanical boundary conditions						
т2	Optimization results for morphing leading	Report/	M14				
12	edge shape	Data	(Milestone M1)				
	Aerodynamic performance estimation of	Report	M25				
Т3	different morphing leading edge design		(Milestone M2)				
	solutions proposed by Clean Sky 2 member						
Month 1 2	3 4 5 6 7 8 9 10 11 12 13 14 15 16	17 18 19 2	0 21 22 23 24 25				
T1 Method							
T2	Optimization D2/M1						
T3			Assessment D3/M2				
	Final shapes						
Design by CS2 Member							

JTI-CS2-2016-CFP04-AIR-02-28

• **Targeted applicant**: University, Research institution and/or engineering services provider in the field of numerical aerodynamics

• Required skills:

- Experience in using software for computational fluid dynamics (CFD) in numerical aerodynamics
- Experience with optimization tools allowing for integration of aerodynamic performance optimization and mechanical boundary conditions. These might be self-developed tools as well as commercial solutions.
- Experience with stress-/strain analyses of structures, e. g. through Finite Element Analyses.
- Possibility to handle (import/export) the file formats mentioned in the task descriptions: *.igs, *.stp, *.3dxml, *.mat

• Contact person:

Volker Landersheim (Fraunhofer LBF) Phone: +49 6151 705-475 volker.landersheim@lbf.fraunhofer.de

Any questions on the Call and topics can be addressed to the following mailbox: Info-Call-CFP-2016-02@Cleansky.eu

Deadline to submit your questions: 16th August 2016, 17:00 (local time)

Thank You

AIRBUS

HELICOPTERS

THALES

Disclaimer

22/06/2016

The content of this presentation is not legally binding. Any updated version will be regularly advertised on the website of the Clean Sky 2 JU.